ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1024]      



Задача 56677

Тема:   [ Касающиеся окружности ]
Сложность: 3
Классы: 8

Радиусы окружностей S1 и S2, касающихся в точке A, равны R и r (R > r). Найдите длину касательной, проведенной к окружности S2 из точки B окружности S1, если известно, что AB = a. (Разберите случаи внутреннего и внешнего касания.)
Прислать комментарий     Решение


Задача 56685

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Из точки A проведены касательные AB и AC к окружности с центром O. Через точку X отрезка BC проведена прямая KL, перпендикулярная XO (точки K и L лежат на прямых AB и AC). Докажите, что KX = XL.
Прислать комментарий     Решение


Задача 66918

Темы:   [ Общая касательная к двум окружностям ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10

Окружности $\omega_1$ и $\omega_2$ пересекаются в точках $P$ и $Q$. Пусть $O$ – точка пересечения общих внешних касательных к $\omega_1$ и $\omega_2$. Прямая, проходящая через точку $O$, пересекает $\omega_1$ и $\omega_2$ в точках $A$ и $B$ соответственно, так, что эти две точки лежат по одну сторону от $PQ$. Прямая $PA$ повторно пересекает $\omega_2$ в точке $C$, а прямая $QB$ повторно пересекает $\omega_1$ в точке $D$. Докажите, что $O$, $C$ и $D$ лежат на одной прямой.
Прислать комментарий     Решение


Задача 76505

Тема:   [ Общая касательная к двум окружностям ]
Сложность: 3
Классы: 8,9

К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.
Прислать комментарий     Решение


Задача 78512

Тема:   [ Признаки и свойства касательной ]
Сложность: 3
Классы: 7,8

На данной окружности выбраны диаметрально противоположные точки A и B и третья точка C. Касательная, проведённая к окружности в точке A, и прямая BC пересекаются в точке M. Доказать, что касательная, проведённая к окружности в точке C, делит пополам отрезок AM.
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .