ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны два выпуклых многоугольника A1A2A3A4...An и B1B2B3B4...Bn. Известно, что A1A2 = B1B2, A2A3 = B2B3,..., AnA1 = BnB1 и n - 3 угла одного многоугольника равны соответственным углам другого. Будут ли многоугольники равны?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 4204]      



Задача 66628

Тема:   [ Инварианты ]
Сложность: 2+
Классы: 6,7,8

Автор: Фольклор

У Ильи есть табличка $3\times 3$, заполненная числами от $1$ до $9$ так, как в таблице слева. За один ход Илья может поменять местами любые две строчки или любые два столбца. Может ли он за несколько ходов получить таблицу справа?

1 2 3
4 5 6
7 8 9
1 4 7
2 5 8
3 6 9

Прислать комментарий     Решение

Задача 77996

Темы:   [ Индукция в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 2+
Классы: 8,9

Даны два выпуклых многоугольника A1A2A3A4...An и B1B2B3B4...Bn. Известно, что A1A2 = B1B2, A2A3 = B2B3,..., AnA1 = BnB1 и n - 3 угла одного многоугольника равны соответственным углам другого. Будут ли многоугольники равны?
Прислать комментарий     Решение


Задача 78060

Темы:   [ Наименьший или наибольший угол ]
[ Системы точек ]
Сложность: 2+
Классы: 8,9

Докажите, что не существует на плоскости четырех точек A, B, C и D таких, что все треугольники ABC, BCD, CDA, DAB остроугольные.
Прислать комментарий     Решение


Задача 102714

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Составьте уравнение прямой, проходящей через точку M(- 3;1) параллельно а) оси Ox; б) оси Oy.

Прислать комментарий     Решение


Задача 102717

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Составьте уравнение прямой, проходящей через точку пересечения прямых 3x + 2y - 5 = 0 и x - 3y + 2 = 0 параллельно оси ординат.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 4204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .