ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан квадрат со стороной 1. Найти геометрическое место точек, сумма расстояний от которых до сторон этого квадрата или их продолжений равна 4.

   Решение

Задачи

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 492]      



Задача 78173

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ ГМТ (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дан квадрат со стороной 1. Найти геометрическое место точек, сумма расстояний от которых до сторон этого квадрата или их продолжений равна 4.
Прислать комментарий     Решение


Задача 102737

Темы:   [ Построение треугольников по различным элементам ]
[ Окружность Ферма-Аполлония ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по его биссектрисе и отрезкам, на которые она делит сторону треугольника.

Пусть нужный треугольник ABC построен, CD = lc — данная биссектриса, BD = a' и AD = b' — данные отрезки, на которые она делит сторону AB. Обозначим BC = a, AC = b.

Первый способ.

По формуле для квадрата биссектрисы треугольника (рис.1)

lc2 = AD2 = BC . AC - BD . AD = ab - a'b'.

По свойству биссектрисы треугольника

$\displaystyle {\frac{a'}{b'}}$ = $\displaystyle {\frac{BD}{AD}}$ = $\displaystyle {\frac{BC}{AC}}$ = $\displaystyle {\frac{a}{b}}$.

Отсюда вытекает следующее построение. По данным отрезкам a' и b' строим отрезок x = $ \sqrt{a'b'}$ — среднее геометрическое отрезков a' и b'. Зная отрезок x и данный отрезок lc, строим отрезки

y = $\displaystyle \sqrt{ab}$ = $\displaystyle \sqrt{l_{c}^{2}+ a'b'}$ = $\displaystyle \sqrt{l_{c}^{2}+ x^{2}}$ и , z = $\displaystyle {\frac{a'}{b'}}$ . y.

Поскольку

a2 = $\displaystyle {\frac{a}{b}}$ . ab = $\displaystyle {\frac{a'}{b'}}$ . y2,

то можно построить отрезок

a = $\displaystyle \sqrt{\frac{a'}{b'}\cdot y^{2}}$ = $\displaystyle \sqrt{\frac{a'}{b'}\cdot y\cdot y}$ = $\displaystyle \sqrt{z\cdot y}$.

По известным отрезкам a, a' и lc строим треугольник BCD. Далее очевидно.

Второй способ.

Известно, что геометрическое место точек, отношение расстояний от каждой из которых до двух заданных точек A и B постоянно и отлтчно от 1, есть окружность (окружность Аполлония).

Пусть a' > b'. Тогда биссектриса внешнего угла при вершине C пересекает продолжение стороны BA за точку A (рис.2). Обозначим точку пересечения через E. Тогда по свойству биссектрисы внешнего угла треугольника

$\displaystyle {\frac{BE}{AE}}$ = $\displaystyle {\frac{BC}{AC}}$ = $\displaystyle {\frac{a}{b}}$ = $\displaystyle {\frac{a'}{b'}}$  $\displaystyle \Rightarrow$  $\displaystyle {\frac{AE}{AB}}$ = $\displaystyle {\frac{b'}{a'-b'}}$.

Значит, можно построить отрезок

AE = AB . $\displaystyle {\frac{b'}{a'-b'}}$ = $\displaystyle {\frac{(a'+b')\cdot b'}{a'-b'}}$.

(Отрезок DE виден из искомой точки C под прямым углом.) Далее на отрезке AB строим как на диаметре окружность — окружность Аполлония для точек A и B и отношения $ {\frac{a'}{b'}}$. Тогда искомая вершина C — это точка пересечения построенной окружности с окружностью с центром D и радиусом lc.

Прислать комментарий     Решение


Задача 55641

Темы:   [ Экстремальные свойства. Задачи на максимум и минимум. ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4+
Классы: 8,9

Среди всех треугольников ABC с данным углом C и стороной AB найдите треугольник с наибольшим возможным периметром.

Прислать комментарий     Решение


Задача 53873

Темы:   [ Ортоцентр и ортотреугольник ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4+
Классы: 8,9

На сторонах AB, BC и CA остроугольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Докажите, что если

$\displaystyle \angle$B1A1C = $\displaystyle \angle$BA1C1$\displaystyle \angle$A1B1C = $\displaystyle \angle$AB1C1 и $\displaystyle \angle$A1C1B = $\displaystyle \angle$AC1B1,

то точки A1, B1 и C1 являются основаниями высот треугольника ABC.

Прислать комментарий     Решение


Задача 54612

Темы:   [ Подобные треугольники и гомотетия (построения) ]
[ Метод ГМТ ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки впишите в данный треугольник прямоугольник, имеющий заданную диагональ.

Прислать комментарий     Решение


Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .