ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана четвёрка ненулевых чисел a, b, c, d. Из неё получается новая ab, bc, cd, da по следующему правилу: каждое число умножается на следующее, четвёртое — на первое. Из новой четвёрки по этому же правилу получается третья и т.д. Доказать, что в полученной последовательности четвёрок никогда не встретится вновь четверка a, b, c, d, кроме случая, когда a = b = c = d = 1.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 233]      



Задача 61235

Темы:   [ Числа Фибоначчи ]
[ Обратные тригонометрические функции ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4+
Классы: 10,11

Докажите, что числа Фибоначчи {Fn} удовлетворяют соотношению

arcctg F2n - arcctg F2n + 2 = arcctg F2n + 1. (8.2)

Получите отсюда равенство

arcctg 2 + arcctg 5 + arcctg 13 +...+ arcctg F2n + 1 +...= $\displaystyle {\dfrac{\pi}{4}}$.


Прислать комментарий     Решение

Задача 61337

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Предел последовательности, сходимость ]
[ Производная и касательная ]
Сложность: 4+
Классы: 10,11

Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

Прислать комментарий     Решение

Задача 61464

Темы:   [ Линейные рекуррентные соотношения ]
[ Квадратные корни (прочее) ]
Сложность: 4+
Классы: 10,11

Рассмотрим равенства:

2 + $\displaystyle \sqrt{3}$ = $\displaystyle \sqrt{4}$ + $\displaystyle \sqrt{3}$,
(2 + $\displaystyle \sqrt{3}$)2 = $\displaystyle \sqrt{49}$ + $\displaystyle \sqrt{48}$,
(2 + $\displaystyle \sqrt{3}$)3 = $\displaystyle \sqrt{676}$ + $\displaystyle \sqrt{675}$,
(2 + $\displaystyle \sqrt{3}$)4 = $\displaystyle \sqrt{9409}$ + $\displaystyle \sqrt{9408}$.

Обобщите результат наблюдения и докажите возникшие у вас догадки.

Прислать комментарий     Решение

Задача 78263

Темы:   [ Рекуррентные соотношения ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 4+
Классы: 8,9,10

Дана четвёрка ненулевых чисел a, b, c, d. Из неё получается новая ab, bc, cd, da по следующему правилу: каждое число умножается на следующее, четвёртое — на первое. Из новой четвёрки по этому же правилу получается третья и т.д. Доказать, что в полученной последовательности четвёрок никогда не встретится вновь четверка a, b, c, d, кроме случая, когда a = b = c = d = 1.
Прислать комментарий     Решение


Задача 109520

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Назовем усреднением последовательности ak действительных чисел последовательность a'k с общим членом a'k= . Рассмотрим последовательности: ak , a'k – ее усреднение, a''k – усреднение последовательности a'k , и т.д. Если все эти последовательности состоят из целых чисел, то будем говорить, что последовательность ak – хорошая. Докажите, что если последовательность xk – хорошая, то последовательность xk2 – тоже хорошая.
Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 233]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .