ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A. Решение |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1026]
Даны две концентрические окружности S1 и S2. С помощью циркуля и линейки проведите прямую, на которой эти окружности высекают три равных отрезка.
На плоскости отмечена точка M, не лежащая на осях координат. По оси ординат движется точка Q, а по оси абсцисс точка P так, что угол PMQ всегда остаётся прямым. Найдите геометрическое место точек N, симметричных M относительно PQ.
В треугольнике АВС ∠В = 110°, ∠С = 50°. На стороне АВ выбрана такая точка Р, что ∠РСВ = 30°, а на стороне АС – такая точка Q, что
Два остроугольных треугольника $ABC$ и $A_{1}B_{1}C_{1}$ таковы, что точки $B_{1}$ и $C_{1}$ лежат на стороне $BC$, а точка $A_{1}$ – внутри треугольника ABC. Пусть $S$ и $S_{1}$ – соответственно площади этих треугольников. Докажите, что $\frac{S}{AB+AC} > \frac{S_1}{A_1B_1 + A_1C_1}$.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 1026] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|