ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности.

   Решение

Задачи

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1026]      



Задача 78542

Темы:   [ Центр масс ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности.
Прислать комментарий     Решение


Задача 79508

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 7,8,9

Пусть AB — основание трапеции ABCD. Доказать, что если AC + BC = AD + BD, то трапеция ABCD — равнобокая.
Прислать комментарий     Решение


Задача 97965

Темы:   [ Композиции симметрий ]
[ Поворот помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Докажите, что прямая BK проходит через центр O описанной около треугольника ABC окружности.

Прислать комментарий     Решение

Задача 108224

Темы:   [ Диаметр, основные свойства ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Параллелограммы (прочее) ]
Сложность: 4
Классы: 7,8,9

Дан параллелограмм ABCD  (AB < BC).  Докажите, что описанные окружности треугольников APQ для всевозможных точек P и Q, выбранных на сторонах BC и CD соответственно так, что  CP = CQ,  имеют общую точку, отличную от A.

Прислать комментарий     Решение

Задача 108674

Темы:   [ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

В треугольнике ABC с острым углом при вершине A проведены биссектриса AE и высота BH . Известно, что AEB = 45o . Найдите угол EHC
Прислать комментарий     Решение


Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .