ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя вынимает из мешка чёрные и красные карточки и складывает их в две стопки. Класть карточку на другую карточку того же цвета запрещено. Десятая и одиннадцатая карточки, выложенные Петей, — красные, а двадцать пятая — чёрная. Какого цвета двадцать шестая выложенная карточка? ![]() ![]() Каждая вершина правильного 13-угольника покрашена либо в чёрный, либо в белый
цвет. ![]() ![]() |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 181]
Каждая вершина правильного 13-угольника покрашена либо в чёрный, либо в белый
цвет.
Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что AK + AN = AB.
Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.
Два правильных многоугольника с периметрами a и b описаны около окружности, а третий правильный многоугольник вписан в эту окружность. Второй и третий многоугольники имеют вдвое больше сторон, чем первый. Найдите периметр третьего многоугольника.
В окружность вписаны три правильных многоугольника, число сторон каждого последующего вдвое больше, чем у предыдущего. Площади первых двух равны S1 и S2. Найдите площадь третьего.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 181] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |