Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 1547]
|
|
Сложность: 3+ Классы: 10,11
|
Точка
A расположена на расстоянии 50 см от центра круга радиуса 1 см.
Разрешается точку
A отразить симметрично относительно произвольной прямой,
пересекающей круг; полученную точку отразить симметрично относительно любой
прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку
A
можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
В треугольник ABC со сторонами AB = 6, BC = 5, AC = 7 вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.
В треугольник MNK со сторонами MN = 6, NK = 7 и углом 60° при вершине N вписан квадрат, две вершины
которого лежат на стороне MN, одна на стороне NK и одна на стороне
MK. Через середину стороны MN и центр квадрата проведена прямая,
которая пересекается с высотой KR треугольника MNK в точке O.
Найдите длину отрезка OK.
Точка Q расположена на стороне MN треугольника LMN так, что NQ : QM = 1 : 2. При повороте этого треугольника на некоторый угол вокруг точки Q вершина L переходит в вершину N, а вершина M – в точку P, лежащую на продолжении стороны LM за точку L. Найдите углы треугольника LMN.
При повороте треугольника KLM на угол 120° вокруг
точки Q, лежащей на стороне KL, вершина M переходит в вершину K, а вершина L – в точку N, лежащую на продолжении стороны LM за точку M. Найдите отношение площадей треугольников KLM и LNQ.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 1547]