ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

X и Y — два выпуклых многоугольника, причём многоугольник X содержится внутри Y. Пусть S(X) и S(Y) — площади этих многоугольников, а P(X) и P(Y) — их периметры. Доказать, что $ {\frac{S(X)}{P(X)}}$ < 2 . $ {\frac{S(Y)}{P(Y)}}$.

   Решение

Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 204]      



Задача 58090

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Выпуклые многоугольники ]
Сложность: 5
Классы: 8,9,10

Внутри выпуклого 2n-угольника взята точка P. Через каждую вершину и точку P проведена прямая. Докажите, что найдется сторона 2n-угольника, с которой ни одна из проведенных прямых не имеет общих внутренних точек.
Прислать комментарий     Решение


Задача 73555

Темы:   [ Разные задачи на разрезания ]
[ Выпуклые многоугольники ]
[ Итерации ]
Сложность: 5
Классы: 7,8,9,10

Можно ли разбить правильный треугольник на миллион многоугольников так, чтобы никакая прямая не пересекала более сорока из этих многоугольников?

Мы говорим, что прямая пересекает многоугольник, если она имеет с ним хотя бы одну общую точку.
Прислать комментарий     Решение


Задача 78217

Темы:   [ ГМТ в пространстве (прочее) ]
[ Выпуклые многоугольники ]
[ Скрещивающиеся прямые и ГМТ ]
Сложность: 5
Классы: 10,11

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Прислать комментарий     Решение


Задача 79397

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Невыпуклые многоугольники ]
[ Принцип Дирихле (площадь и объем) ]
[ Многоугольники (неравенства) ]
Сложность: 5
Классы: 9,10,11

X и Y — два выпуклых многоугольника, причём многоугольник X содержится внутри Y. Пусть S(X) и S(Y) — площади этих многоугольников, а P(X) и P(Y) — их периметры. Доказать, что $ {\frac{S(X)}{P(X)}}$ < 2 . $ {\frac{S(Y)}{P(Y)}}$.
Прислать комментарий     Решение


Задача 73545

Темы:   [ Покрытия ]
[ Теорема Хелли ]
[ Общие четырехугольники ]
[ Перпендикуляр и наклонная ]
Сложность: 5+
Классы: 8,9,10

Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.
Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .