ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В языке Древнего Племени алфавит состоит всего из двух букв: М и О. Два слова являются синонимами, если одно из другого можно получить при помощи
  а) исключения буквосочетаний МО или ООММ,
  б) добавления в любое место буквосочетания ОМ.
Являются ли синонимами в языке Древнего Племени слова ОММ и МОО?

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 629]      



Задача 79659

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

Даны шесть чисел: 1, 2, 3, 4, 5, 6. Разрешается к любым двум из них прибавлять по 1.
Можно ли, проделав это несколько раз, сделать эти числа равными?

Прислать комментарий     Решение

Задача 88006

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7,8

Во время шахматного турнира, несколько игроков сыграли нечётное количество партий. Докажите, что число таких игроков чётно.

Прислать комментарий     Решение

Задача 88155

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 3
Классы: 5,6,7

  Школьник сказал своему приятелю Вите Иванову:
  – У нас в классе тридцать пять человек. И представь, каждый из них дружит ровно с одиннадцатью одноклассниками...
  – Не может этого быть, – сразу ответил Витя Иванов, победитель математической олимпиады.
  Почему он так решил?

Прислать комментарий     Решение

Задача 89927

Темы:   [ Лингвистика ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7,8

В языке Древнего Племени алфавит состоит всего из двух букв: М и О. Два слова являются синонимами, если одно из другого можно получить при помощи
  а) исключения буквосочетаний МО или ООММ,
  б) добавления в любое место буквосочетания ОМ.
Являются ли синонимами в языке Древнего Племени слова ОММ и МОО?
Прислать комментарий     Решение


Задача 97981

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Куб ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9,10

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .