ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Правильный треугольник разбит прямыми, параллельными его сторонам, на равные между собой правильные треугольники. Один из маленьких треугольников чёрный, остальные – белые. Разрешается перекрашивать одновременно все треугольники, пересекаемые прямой, параллельной любой стороне исходного треугольника. Всегда ли можно с помощью нескольких таких перекрашиваний добиться того, чтобы все маленькие треугольники стали белыми?

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 288]      



Задача 116930

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Куб ]
[ Инварианты ]
Сложность: 3
Классы: 8,9

Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?

Прислать комментарий     Решение

Задача 32803

Темы:   [ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
  а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.
  б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.

Прислать комментарий     Решение

Задача 60672

Темы:   [ Инварианты ]
[ Делимость чисел. Общие свойства ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9,10

Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49 камней, а в третьей – 5 камней. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли получить 105 кучек по одному камню в каждой?

Прислать комментарий     Решение

Задача 97952

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Раскраски ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Правильный треугольник разбит прямыми, параллельными его сторонам, на равные между собой правильные треугольники. Один из маленьких треугольников чёрный, остальные – белые. Разрешается перекрашивать одновременно все треугольники, пересекаемые прямой, параллельной любой стороне исходного треугольника. Всегда ли можно с помощью нескольких таких перекрашиваний добиться того, чтобы все маленькие треугольники стали белыми?

Прислать комментарий     Решение

Задача 98072

Темы:   [ Системы точек и отрезков (прочее) ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Вспомогательная раскраска (прочее) ]
[ Инварианты ]
Сложность: 3+
Классы: 10,11

Тремя бесконечными сериями равноотстоящих параллельных прямых плоскость разбита на равносторонние треугольники со стороной 1.
M – множество всех их вершин. A и B – две вершины одного треугольника. Разрешается поворачивать плоскость на 120° вокруг любой из вершин множества M. Можно ли за несколько таких преобразований перевести точку A в точку B?

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 288]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .