Страница:
<< 10 11 12 13 14 15
16 >> [Всего задач: 77]
|
|
Сложность: 4+ Классы: 10,11
|
Из двух треугольных пирамид с общим основанием одна лежит внутри другой.
Может ли быть сумма ребер внутренней пирамиды больше суммы ребер внешней?
|
|
Сложность: 4+ Классы: 10,11
|
Существуют ли выпуклая
n -угольная (
n
4
)
и треугольная пирамиды такие, что четыре трехгранных угла
n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
|
|
Сложность: 5+ Классы: 10,11
|
Докажите, что в пространстве существует такое расположение 2001 выпуклого многогранника, что никакие три из многогранников не имеют общих точек, а каждые два касаются друг друга (то есть имеют хотя бы одну граничную точку, но не имеют общих внутренних точек).
|
|
Сложность: 6+ Классы: 10,11
|
Дана треугольная пирамида. Леша хочет выбрать два ее скрещивающихся ребра и на них, как на диаметрах, построить шары.
Всегда ли он может выбрать такую пару, что любая точка пирамиды лежит хотя бы в одном из этих шаров?
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что из шести ребер тетраэдра можно сложить два треугольника.
Страница:
<< 10 11 12 13 14 15
16 >> [Всего задач: 77]