ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
|
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 401]
В выпуклом пятиугольнике ABCDE углы ABC и CDE равны по 90o, стороны BC, CD и AE равны по 1 и сумма сторон AB и DE равна 1. Докажите, что площадь пятиугольника равна 1.
Даны две концентрические окружности S1 и S2. С помощью циркуля и линейки проведите прямую, на которой эти окружности высекают три равных отрезка.
На рисунке изображена снежинка, симметричная относительно поворота вокруг точки O на 60° (при этом повороте каждый луч снежинки переходит в другой луч) и отражения относительно прямой OX. Найдите отношение длин отрезков OX : XY. (Пунктирными линиями показаны точки, лежащие на одной прямой.)
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|