Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 401]
Точка
O — центр круга, описанного около треугольника
ABC. Точки
A1,
B1 и
C1 симметричны точке
O относительно сторон треугольника
ABC.
Докажите, что все высоты треугольника
A1B1C1 проходят через точку
O,
а все высоты треугольника
ABC проходят через центр круга, описанного около
треугольника
A1B1C1.
Пусть
P - середина стороны
AB выпуклого четырехугольника
ABCD. Докажите, что если площадь треугольника
PDC равна половине
площади четырехугольника
ABCD, то стороны
BC и
AD параллельны.
Фигура имеет две перпендикулярные оси симметрии. Верно ли,
что она имеет центр симметрии?
Докажите, что противоположные стороны шестиугольника,
образованного сторонами треугольника и касательными к его
вписанной окружности, параллельными сторонам, равны между собой.
На сторонах
BC и
CD квадрата
ABCD взяты точки
M
и
K соответственно, причем
BAM =
MAK. Докажите,
что
BM +
KD =
AK.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 401]