ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли такое шестизначное число A, что среди чисел  A, 2A, ..., 500000A  нет ни одного числа, оканчивающегося шестью одинаковыми цифрами?

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 606]      



Задача 73702

Темы:   [ Теорема Эйлера ]
[ Арифметическая прогрессия ]
[ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 4
Классы: 8,9,10

Автор: Пойа Дж.

В любой арифметической прогрессии  a,  a + d,  a + 2d,  ...,  a + nd,  ...,  составленной из натуральных чисел, есть бесконечно много членов, в разложении которых на простые множители входят в точности одни и те же простые числа. Докажите это.

Прислать комментарий     Решение

Задача 79440

Темы:   [ Арифметика остатков (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Доказать, что  4m − 4n  делится на 3k+1 тогда и только тогда, когда  m − n  делится на 3k.

Прислать комментарий     Решение

Задача 98321

Темы:   [ Деление с остатком ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Существует ли такое шестизначное число A, что среди чисел  A, 2A, ..., 500000A  нет ни одного числа, оканчивающегося шестью одинаковыми цифрами?

Прислать комментарий     Решение

Задача 98410

Темы:   [ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Системы линейных уравнений ]
Сложность: 4
Классы: 7,8

Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.

Прислать комментарий     Решение

Задача 109683

Темы:   [ Алгоритм Евклида ]
[ Процессы и операции ]
Сложность: 4
Классы: 7,8,9

На доске написаны два различных натуральных числа a и b. Меньшее из них стирают, и вместо него пишут число    (которое может уже оказаться нецелым). С полученной парой чисел делают ту же операцию и т.д. Докажите, что в некоторый момент на доске окажутся два равных натуральных числа.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .