ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) 100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие. б) Рассмотрим такие n, что набор гирь 1, 2, ... , n г можно
разделить на две части, равные по весу. ![]() |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 96]
а) 100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие. б) Рассмотрим такие n, что набор гирь 1, 2, ... , n г можно
разделить на две части, равные по весу.
На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа k, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес k самых тяжелых монет из первой кучки не больше суммарного веса k самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше x, на монету веса x (в обеих кучках), то первая кучка монет окажется не легче второй, каково бы ни было положительное число x.
В таблице 2×n расставлены положительные числа так, что в каждом из n столбцов сумма двух чисел равна 1.
На кольцевом треке 2n велосипедистов стартовали одновременно из одной точки и поехали с постоянными различными скоростями (в одну сторону). Если после старта два велосипедиста снова оказываются одновременно в одной точке, назовём это встречей. До полудня каждые два велосипедиста встретились хотя бы раз, при этом никакие три или больше не встречались одновременно. Докажите, что до полудня у каждого велосипедиста было не менее n² встреч.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 96] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |