ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В остроугольном треугольнике $ABC$ с высотой $AH=h$ проведена прямая через центры $O$ и $I$ описанной и вписанной окружностей. Эта прямая пересекает стороны $AB$ и $AC$ в точках $F$ и $N$ соответственно, причем около четырехугольника $BFNC$ можно описать окружность. Найдите сумму расстояний от ортоцентра треугольника $ABC$ до его вершин.

Вниз   Решение


Стороны пятиугольника в порядке обхода равны 5, 6, 7, 8 и 9. Стороны этого пятиугольника касаются одной окружности. На какие отрезки точка касания со стороной, равной 5, делит эту сторону?

ВверхВниз   Решение


Правильный (2n+1)-угольник разбили диагоналями на  2n – 1  треугольник. Докажите, что среди них по крайней мере три равнобедренных.

Вверх   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 508]      



Задача 65807

Темы:   [ Шестиугольники ]
[ Правильные многоугольники ]
[ Точка Лемуана ]
[ Средняя линия треугольника ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9,10

Автор: Скутин А.

Правильный шестиугольник ABCDEF вписан в окружность. Точки P и Q выбраны на касательных, проведённых к этой окружности в точках A и D соответственно, так, что прямая PQ касается меньшей дуги EF этой окружности. Найдите угол между прямыми PB и QC.

Прислать комментарий     Решение

Задача 66112

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Обухов Б.

В выпуклом шестиугольнике ABCDEF все стороны равны, а также  AD = BE = CF.  Докажите, что в этот шестиугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 66193

Темы:   [ Многоугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10

В выпуклом n-угольнике провели несколько диагоналей так, что ни в какой точке внутри многоугольника не пересеклись три или более из них. В результате многоугольник разбился на треугольники. Каково наибольшее возможное число треугольников?

Прислать комментарий     Решение

Задача 98545

Темы:   [ Разные задачи на разрезания ]
[ Правильные многоугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Правильный (2n+1)-угольник разбили диагоналями на  2n – 1  треугольник. Докажите, что среди них по крайней мере три равнобедренных.

Прислать комментарий     Решение

Задача 108039

Темы:   [ Перегруппировка площадей ]
[ Шестиугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В шестиугольнике ABCDEF, вписанном в окружность,  AB = BC,  CD = DE,  EF = FA.
Докажите, что площадь треугольника BDF равна половине площади шестиугольника.

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .