Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 375]
|
|
Сложность: 3 Классы: 7,8,9
|
В окружности с центром O проведена хорда AB и радиус OK,
пересекающий её под прямым углом в точке M. На большей дуге AB
окружности выбрана точка P, отличная от середины этой дуги. Прямая PM вторично пересекает окружность в точке Q, а прямая PK пересекает AB в точке R. Докажите, что KR > MQ.
В трапеции ABCD стороны AD и BC параллельны, и AB = BC = BD. Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.
|
|
Сложность: 3+ Классы: 9,10
|
В треугольнике ABC ∠B = 60°, O – центр описанной окружности, BL – биссектриса. Описанная окружность треугольника BOL пересекает описанную окружность треугольника ABC вторично в точке D. Докажите, что BD ⊥ AC.
|
|
Сложность: 3+ Классы: 9,10
|
Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB.
|
|
Сложность: 3+ Классы: 10,11
|
Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если AB = c, AM = m и AN = n.
Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 375]