Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 413]
|
|
Сложность: 3- Классы: 7,8,9
|
Докажите, что уравнение x² + y² – z² = 1997 имеет бесконечно много решений в целых числах.
Зная, что число 1993 простое, выясните, существуют ли такие натуральные числа x и y, что
а) x² – y² = 1993;
б) x³ – y³ = 1993;
в) x4 – y4 = 1993?
|
|
Сложность: 3- Классы: 7,8,9
|
Найдите какие-нибудь четыре попарно различных натуральных числа a,
b, c, d, для которых числа a² + 2cd + b² и c² + 2ab + d² являются полными квадратами.
|
|
Сложность: 3- Классы: 7,8,9
|
Мороженое стоит 2000 рублей. У Пети имеется 4005 – 399²·(400³ + 2·400² + 3·400 + 4) рублей. Достаточно ли у Пети денег на мороженое?
|
|
Сложность: 3- Классы: 8,9,10
|
Сколько существует таких натуральных n, не превосходящих 2012, что сумма 1n + 2n + 3n + 4n оканчивается на 0?
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 413]