ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 413]      



Задача 35007

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9

Найдите все пары натуральных чисел  (x, y),  удовлетворяющие уравнению  xy – x + 4y = 15.

Прислать комментарий     Решение

Задача 35085

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Разложите многочлен  x8 + x4 + 1  на четыре множителя.

Прислать комментарий     Решение

Задача 35562

Темы:   [ Целочисленные и целозначные многочлены ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Докажите, что не существует многочлена P(x) с целыми коэффициентами, для которого  P(6) = 5  и  P(14) = 9.

Прислать комментарий     Решение

Задача 35751

Темы:   [ Теория алгоритмов (прочее) ]
[ Формулы сокращенного умножения ]
[ Криптография ]
Сложность: 3
Классы: 8,9

Вам пришло зашифрованное сообщение: Ф В М Ё Ж Т И В Ф Ю Найдите исходное сообщение, если известно, что шифрпреобразование заключалось в следующем. Пусть x1, x2 - корни трехчлена x2+3x+1. К порядковому номеру каждой буквы в стандартном русском алфавите (33 буквы) прибавлялось значение многочлена f(x)=x6+3x5+x4+x3+4x2+4x+3, вычисленное либо при x=x1, либо при x=x2 (в неизвестном нам порядке), а затем полученное число заменялось соответствующей ему буквой. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 60295

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Докажите, что для любого натурального n число  32n+2 + 8n – 9  делится на 16.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 413]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .