ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждая из окружностей S1 , S2 и S3 касается внешним образом окружности S (в точках A1 , B1 и C1 соответственно) и двух сторон треугольника ABC (см.рис.). Докажите, что прямые AA1 , BB1 и CC1 пересекаются в одной точке. ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
Многочлен p и число a таковы, что для любого числа x верно равенство p(x) = p(a – x).
На плоскости нарисовали кривые y = cos x и x = 100 cos(100y) и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите a/b.
| 2x -
Решите систему
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |