ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 76]      



Задача 98303

Темы:   [ Десятичная система счисления ]
[ Линейные неравенства и системы неравенств ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8

Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?

Прислать комментарий     Решение

Задача 78703

Темы:   [ Периодичность и непериодичность ]
[ Линейные неравенства и системы неравенств ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Дана бесконечная последовательность чисел a1, ..., an, ... Она периодична с периодом 100, то есть  a1 = a101a2 = a102,  ... Известно, что  a1 ≥ 0,  a1 + a2 ≤ 0,  a1 + a2 + a3 ≥ 0  и вообще, сумма  a1 + a2 + ... + an  неотрицательна при нечётном n и неположительна при чётном n. Доказать, что  |a99| ≥ |a100|.

Прислать комментарий     Решение

Задача 107828

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
[ Взвешивания ]
Сложность: 3
Классы: 8,9,10

На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой?

Прислать комментарий     Решение

Задача 32079

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 5,7,8,9

Али-Баба пришёл в пещеру, где есть золото, алмазы и сундук, в котором их можно унести. Полный сундук золота весит 200 кг, полный сундук алмазов – 40 кг, пустой сундук ничего не весит. Килограмм золота стоит на базаре 20 динаров, килограмм алмазов – 60 динаров. Али-Баба может поднять и унести не более 100 кг. Какую наибольшую сумму (денег) он может получить за сокровища, которые он принесёт из пещеры за один раз?

Прислать комментарий     Решение

Задача 32893

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Линейные неравенства и системы неравенств ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Про положительные числа a, b, c, d, e известно, что  a² + b² + c² + d² + e² = ab + ac + ad + ae + bc + bd + be + cd + ce + de.
Докажите, что среди этих чисел найдутся три, которые не могут быть длинами сторон одного треугольника.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 76]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .