Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 418]
|
|
Сложность: 3+ Классы: 9,10,11
|
При каких натуральных n > 1 найдутся такие различные натуральные числа a1, a2, ..., an, что сумма a1/a2 + a2/a3 + an/a1 – целое число?
В выражении 10 : 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 расставили скобки так, что значение выражения оказалось целым числом.
Какое наименьшее число могло получиться?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80.
|
|
Сложность: 3+ Классы: 9,10
|
Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.
|
|
Сложность: 3+ Классы: 8,9,10
|
6n-значное число делится на 7. Последнюю цифру перенесли в начало.
Доказать, что полученное число также делится на 7.
Страница:
<< 48 49 50 51
52 53 54 >> [Всего задач: 418]