ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 2440]      



Задача 61394

Темы:   [ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Классические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
[ Индукция (прочее) ]
[ Число e ]
Сложность: 4+
Классы: 10,11

Докажите неравенства:
  а)  

  б)     при  n > 1;

  в)     при n > 6.

Прислать комментарий     Решение

Задача 61466

Тема:   [ Уравнения в целых числах ]
Сложность: 4+
Классы: 10,11

Найдите все целочисленные решения уравнения  a² – 3b² = 1.

Прислать комментарий     Решение

Задача 61479

Тема:   [ Уравнения в целых числах ]
Сложность: 4+
Классы: 10,11

Докажите, что последовательность  an = 1 + 17n²  (n ≥ 0)  содержит бесконечно много квадратов целых чисел.

Прислать комментарий     Решение

Задача 66840

Темы:   [ Функция Эйлера ]
[ Принцип Дирихле (прочее) ]
[ Формула включения-исключения ]
Сложность: 4+
Классы: 8,9,10,11

Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.
Докажите, что красных чисел не больше чем φ($n$).

Прислать комментарий     Решение

Задача 66857

Темы:   [ Арифметика остатков (прочее) ]
[ Последовательности (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4+
Классы: 8,9,10,11

Глеб задумал натуральные числа $N$ и $a$, где  $a < N$ . Число $a$ он написал на доске. Затем Глеб стал проделывать такую операцию: делить $N$ с остатком на последнее выписанное на доску число и полученный остаток от деления также записывать на доску. Когда на доске появилось число 0, он остановился. Мог ли Глеб изначально выбрать такие $N$ и $a$, чтобы сумма выписанных на доске чисел была больше 100$N$?

Прислать комментарий     Решение

Страница: << 158 159 160 161 162 163 164 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .