Страница:
<< 159 160 161 162
163 164 165 >> [Всего задач: 2440]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?
|
|
Сложность: 4+ Классы: 8,9,10
|
Сколько существует натуральных чисел x, меньших 10000, для которых 2x – x² делится на 7?
|
|
Сложность: 4+ Классы: 7,8,9,10
|
Хозяйка испекла для гостей пирог. За столом может оказаться либо p человек, либо q (p и q взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну?
|
|
Сложность: 4+ Классы: 8,9,10
|
Пусть n и b – натуральные числа. Через V(n, b) обозначим число разложений n на сомножители, каждый из которых больше b (например:
36 = 6·6 = 4·9 = 3·3·4 = 3·12, так что V(36, 2) = 5). Докажите, что V(n, b) < n/b.
|
|
Сложность: 4+ Классы: 8,9,10
|
Число N, не делящееся на 81, представимо в виде суммы квадратов трёх целых чисел, делящихся на 3.
Докажите, что оно также представимо в виде суммы квадратов трёх целых чисел, не делящихся на 3.
Страница:
<< 159 160 161 162
163 164 165 >> [Всего задач: 2440]