ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
![]() ![]() ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Из вершин A и B опущены перпендикуляры на CD, пересекающие прямые BD и AC в точках K и L соответственно. Докажите, что AKLB — ромб. ![]() ![]() |
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 629]
10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие.
Разрешены две операции:
Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы
Рассматриваются тройки целых чисел a, b и c, для которых выполнено условие: a + b + c = 0. Для каждой такой тройки вычисляется число
Можно ли отметить на числовой оси 50 отрезков (быть может, перекрывающихся) так, что их длины – 1, 2, 3, ... , 50, а их концы – все целые точки от 1 до 100 включительно?
Cлава перемножил первые n натуральных чисел, а Валера перемножил первые m чётных натуральных чисел (n и m больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 629] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |