ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи


Основание пирамиды - прямоугольник с диагональю, равной b, и углом в 60o между диагоналями. Каждое из боковых ребер образует с плоскостью основания угол в 45o. Найдите объем пирамиды.

Вниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Из вершин A и B опущены перпендикуляры на CD, пересекающие прямые BD и AC в точках K и L соответственно. Докажите, что AKLB — ромб.

Вверх   Решение

Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 629]      



Задача 98219

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9,10

10 фишек стоят на столе по кругу. Сверху фишки красные, снизу – синие. Разрешены две операции:
  а) перевернуть четыре фишки, стоящие подряд;
  б) перевернуть четыре фишки, расположенные так:  ××0××  (× – фишка, входящая в четвёрку, 0 – не входящая).
Удастся ли, используя несколько раз разрешённые операции, перевернуть все фишки синей стороной вверх?
Прислать комментарий     Решение


Задача 98261

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Вспомогательная раскраска (прочее) ]
[ Композиция центральных симметрий ]
[ Метод координат на плоскости ]
Сложность: 3+
Классы: 7,8,9

Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы     и     равны). Докажите, что три кузнечика не могут оказаться
  а) на одной прямой, параллельной стороне квадрата;
  б) на одной произвольной прямой.

 
Прислать комментарий     Решение

Задача 98445

Темы:   [ Уравнения в целых числах ]
[ Четность и нечетность ]
[ Признаки делимости на 3 и 9 ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9

Рассматриваются тройки целых чисел a, b и c, для которых выполнено условие:  a + b + c = 0.  Для каждой такой тройки вычисляется число
d = a1999 + b1999 + c1999.   Может ли случиться, что
  а)  d = 2?
  б) d – простое число?

Прислать комментарий     Решение

Задача 98452

Темы:   [ Системы точек и отрезков (прочее) ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

Можно ли отметить на числовой оси 50 отрезков (быть может, перекрывающихся) так, что их длины – 1, 2, 3, ... , 50, а их концы – все целые точки от 1 до 100 включительно?

Прислать комментарий     Решение

Задача 98533

Темы:   [ Произведения и факториалы ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Cлава перемножил первые n натуральных чисел, а Валера перемножил первые m чётных натуральных чисел (n и m больше 1). В результате у них получилось одно и то же число. Докажите, что хотя бы один из мальчиков ошибся.

Прислать комментарий     Решение

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .