ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 629]      



Задача 79623

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 11

Требуется заполнить числами квадратную таблицу из n×n клеток так, чтобы сумма чисел на каждой из  4n – 2  диагоналей равнялась 1. Можно ли это сделать при
  а)  n = 55?
  б)  n = 1992?

Прислать комментарий     Решение

Задача 88040

Темы:   [ Ребусы ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Расшифруйте ребус

Все цифры, обозначенные буквой Ч, – чётные (не обязательно равные); все цифры, обозначенные буквой Н, – нечётные (тоже не обязательно равные).

Прислать комментарий     Решение

Задача 88042

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3+
Классы: 5,6,7,8

Все поля шахматной доски 8×8 покрыли 32 косточками домино (каждая косточка закрывает в точности два поля).
Докажите, что число вертикально лежащих косточек чётно.

Прислать комментарий     Решение

Задача 88282

Темы:   [ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
[ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 3+
Классы: 6,7,8

В небольшом шотландском городке стояла школа, в которой учились ровно 1000 школьников. У каждого из них был шкаф для одежды – всего 1000 шкафов, причём шкафы были пронумерованы числами о 1 до 1000. А ещё в этой школе жили привидения – ровно 1000 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала первое привидение открыло все шкафы; потом второе привидение закрыло те шкафы, номер которых делился на 2; затем третье привидение поменяло позиции (то есть открыло шкаф, если он был закрыт, и закрыло – если он был открыт) тех шкафов, номер которых делился на 3; следом за ним четвёртое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т.д. Как только тысячное привидение поменяло позицию тысячного шкафа, пропел петух, и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?

Прислать комментарий     Решение

Задача 88305

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске написаны числа
  а) 1, 2, 3, ..., 2003;
  б) 1, 2, 3, ..., 2005.
Разрешается стереть два любых числа и вместо них написать их разность. Можно ли добиться того, чтобы все числа стали нулями?

Прислать комментарий     Решение

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .