ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 694]      



Задача 76478

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4+
Классы: 8,9,10

Сколько существует натуральных чисел x, меньших 10000, для которых  2x – x²  делится на 7?

Прислать комментарий     Решение

Задача 109600

Темы:   [ Процессы и операции ]
[ Арифметическая прогрессия ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Ню В.

На карусели с n сиденьями мальчик катался n сеансов подряд. После каждого сеанса он вставал и, двигаясь по часовой стрелке, пересаживался на другое сиденье. Число сидений карусели, мимо которых мальчик проходит при пересаживании, включая и то, на которое он садится, назовём длиной перехода. При каких n за n сеансов мальчик мог побывать на каждом сиденье, если длины всех n – 1  переходов различны и меньше n?

Прислать комментарий     Решение

Задача 116007

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из n человек, команда математических – из m, причём  nm.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

Прислать комментарий     Решение

Задача 116008

Темы:   [ Делимость чисел. Общие свойства ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Интерполяционный многочлен Лагранжа ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

Дана функция f(x), значение которой при любом целом x целое. Известно, что для любого простого числа p существует такой многочлен Qp(x) степени, не превышающей 2013, с целыми коэффициентами, что  f(n) – Qp(n)  делится на p при любом целом n. Верно ли, что существует такой многочлен g(x) с вещественными коэффициентами , что  g(n) = f(n)  для любого целого n?

Прислать комментарий     Решение

Задача 61250

Темы:   [ Тригонометрия (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4+
Классы: 10,11

Пусть

uk = $\displaystyle {\dfrac{\sin2nx\cdot\sin(2n-1)\cdot
x\ldots\cdot\sin(2n-k+1)x}{\sin
kx\cdot\sin(k-1)x\cdot\ldots\cdot\sin x}}$.

Докажите, что числа uk можно представить в виде многочлена от cos x.

Прислать комментарий     Решение

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .