ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 694]      



Задача 111349

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите  а) наименьшее такое число,  б) все такие числа.

Прислать комментарий     Решение

Задача 115408

Темы:   [ Делимость чисел. Общие свойства ]
[ Последовательности (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10

В бесконечной возрастающей последовательности натуральных чисел каждое делится хотя бы на одно из чисел 1005 и 1006, но ни одно не делится на 97. Кроме того, каждые два соседних числа отличаются не более чем на k. При каком наименьшем k такое возможно?

Прислать комментарий     Решение

Задача 65210

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Двоичная система счисления ]
[ Производящие функции ]
Сложность: 4+
Классы: 10,11

День в Анчурии может быть либо ясным, когда весь день солнце, либо дождливым, когда весь день льет дождь. И если сегодня день не такой, как вчера, то анчурийцы говорят, что сегодня погода изменилась. Однажды анчурийские ученые установили, что 1 января день всегда ясный, а каждый следующий день в январе будет ясным, только если ровно год назад в этот день погода изменилась. В 2015 году январь в Анчурии был весьма разнообразным: то солнце, то дожди. В каком году погода в январе впервые будет меняться ровно так же, как в январе 2015 года?

Прислать комментарий     Решение

Задача 65680

Темы:   [ Шахматная раскраска ]
[ Числа Фибоначчи ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 9,10,11

Бесконечную клетчатую доску раскрасили шахматным образом, и в каждую белую клетку вписали по отличному от нуля целому числу. После этого для каждой чёрной клетки посчитали разность: произведение того, что написано в соседних по горизонтали клетках, минус произведение того, что написано в соседних по вертикали. Могут ли все такие разности равняться 1?

Прислать комментарий     Решение

Задача 66857

Темы:   [ Арифметика остатков (прочее) ]
[ Последовательности (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4+
Классы: 8,9,10,11

Глеб задумал натуральные числа $N$ и $a$, где  $a < N$ . Число $a$ он написал на доске. Затем Глеб стал проделывать такую операцию: делить $N$ с остатком на последнее выписанное на доску число и полученный остаток от деления также записывать на доску. Когда на доске появилось число 0, он остановился. Мог ли Глеб изначально выбрать такие $N$ и $a$, чтобы сумма выписанных на доске чисел была больше 100$N$?

Прислать комментарий     Решение

Страница: << 99 100 101 102 103 104 105 >> [Всего задач: 694]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .