ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 590]      



Задача 66014

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Существует ли треугольник, для сторон x, y, z которого выполнено соотношение  x³ + y³ + z³ = (x + y)(y + z)(z + x)?

Прислать комментарий     Решение

Задача 73542

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10

a, b, c – длины сторон треугольника. Докажите, что  

Прислать комментарий     Решение

Задача 73558

Темы:   [ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Для любого натурального числа n, большего единицы, квадрат отношения произведения первых n нечётных чисел к произведению первых n чётных чисел больше числа 1/4n, но меньше числа 3/8n. Докажите это.

Прислать комментарий     Решение

Задача 73586

Темы:   [ Тождественные преобразования ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 7,8,9

Если произведение трёх положительных чисел равно 1, а сумма этих чисел строго больше суммы их обратных величин, то ровно одно из этих чисел больше 1. Докажите это.

Прислать комментарий     Решение

Задача 77993

Темы:   [ Рекуррентные соотношения ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 11

Пусть  x0 = 109xn = .  Доказать, что  0 < x36 < 10–9.

Прислать комментарий     Решение

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .