Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 590]
|
|
Сложность: 5- Классы: 8,9,10
|
В ботаническом справочнике каждое растение характеризуется 100 признаками
(каждый признак либо присутствует, либо отсутствует). Растения считаются
непохожими, если они различаются не менее, чем по 51 признаку.
а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
б) А может ли быть ровно 50?
|
|
Сложность: 5- Классы: 9,10,11
|
Определите наименьшее действительное число M, при котором неравенство |ab(a² – b²) + bc(b² – c²) + ca(c² – a²)| ≤ M(a² + b² + c²)² выполняется для любых действительных чисел a, b, c.
|
|
Сложность: 5- Классы: 10,11
|
k ≥ 6 – натуральное число. Докажите, что если некоторый многочлен с целыми коэффициентами принимает в k целых точках значения среди чисел от 1 до k – 1, то эти значения равны.
|
|
Сложность: 5 Классы: 9,10,11
|
Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
а) меньше 2 для любого остроугольного треугольника;
б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна 2 arctg 4/3; а среди треугольников с тупым углом, меньшим 2 arctg 4/3, имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.
|
|
Сложность: 5 Классы: 9,10,11
|
На окружности расположена тысяча непересекающихся дуг, и на каждой из них
написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное
значение наибольшего из написанных чисел?
Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 590]