ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 239]      



Задача 116870

Темы:   [ Правильный (равносторонний) треугольник ]
[ Перегруппировка площадей ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Поворот помогает решить задачу ]
Сложность: 3
Классы: 9,10

На сторонах AB и BC равностороннего треугольника ABC отмечены точки L и K соответственно, M – точка пересечения отрезков AK и CL. Известно, что площадь треугольника AMC равна площади четырёхугольника LBKM. Найдите угол AMC.

Прислать комментарий     Решение

Задача 32071

Темы:   [ Шестиугольники ]
[ Правильный (равносторонний) треугольник ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

a1, a2, a3, a4, a5, a6 – последовательные стороны шестиугольника, все углы которого равны. Докажите, что  a1a4 = a3a6 = a5a2.

Прислать комментарий     Решение

Задача 53601

Темы:   [ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Признаки подобия ]
Сложность: 3+
Классы: 8,9

Биссектриса угла C треугольника ABC делит сторону AB на отрезки, равные a и b  (a > b).  Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Прислать комментарий     Решение

Задача 53676

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Высота прямоугольного треугольника, проведённая из вершины прямого угла, равна a и образует угол α с медианой, проведённой из той же вершины. Найдите катеты треугольника.

Прислать комментарий     Решение

Задача 54094

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Вершины M и N равнобедренного треугольника BMN  (BM = BN)  лежат соответственно на сторонах AD и CD квадрата ABCD. Докажите, что  MN || AC.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .