Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 239]
|
|
Сложность: 3+ Классы: 7,8,9
|
Треугольник $ABC$ равносторонний. На сторонах $AB$ и $AC$ выбрали точки $E$ и $F$, а на продолжении стороны $AB$ – точку $K$ так, что $AE=CF=BK$. Точка $P$ – середина $EF$. Докажите, что угол $KPC$ прямой.
Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков –
различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат.
Биссектриса угла A треугольника ABC пересекает описанную
около треугольника окружность в точке K.
Докажите, что проекция отрезка AK на прямую AB равна полусумме сторон AB и AC.
На двух сторонах треугольника вне его построены квадраты. Докажите, что отрезок, соединяющий концы сторон квадратов, выходящих из одной вершины треугольника, в два раза больше медианы треугольника, выходящей из той же вершины.
Через середину S отрезка MN, концы которого лежат на боковых
сторонах равнобедренного треугольника, проведена прямая, параллельная основанию треугольника и пересекающая боковые стороны в точках K и L. Докажите, что проекция отрезка MN на основание треугольника равна отрезку KL.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 239]