Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 51]
На сторонах АВ, ВС и АС равностороннего треугольника АВС выбраны точки K, M и N соответственно так, что угол MKB равен углу MNC, а угол KMB равен углу KNA. Докажите, что NB – биссектриса угла MNK.
|
|
Сложность: 3+ Классы: 5,6,7
|
Биссектрисы треугольника ABC пересекаются в точке I, ∠ABC = 120°. На продолжениях сторон AB и CB за точку B отмечены соответственно точки P и Q так, что AP = CQ = AC. Докажите, что угол PIQ – прямой.
Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.
|
|
Сложность: 4- Классы: 10,11
|
B треугольнике ABC угол A равен 120°. Докажите, что расстояние от центра описанной окружности до ортоцентра равно AB + AC.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Равнобедренный треугольник с углом 120° сложен ровно из трёх слоёв бумаги. Треугольник развернули – и получился прямоугольник. Нарисуйте такой прямоугольник и покажите пунктиром линии сгиба.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 51]