Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 52]
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике ABC угол B равен 60°. Точка D внутри треугольника такова, что ∠ADB = ∠ADC = ∠BDC.
Найдите наименьшее значение площади треугольника ABC, если BD = a.
а) Докажите, что если угол
A треугольника
ABC
равен
120
o, то центр описанной окружности и ортоцентр
симметричны относительно биссектрисы внешнего угла
A.
б) В треугольнике
ABC угол
A равен
60
o;
O — центр
описанной окружности,
H — ортоцентр,
I — центр вписанной
окружности, а
Ia — центр вневписанной окружности, касающейся
стороны
BC. Докажите, что
IO =
IH и
IaO =
IaH.
В треугольнике
ABC угол
A равен
120
o.
Докажите, что из отрезков длиной
a,
b,
b +
c можно составить треугольник.
В треугольнике ABC: ∠C = 60°, ∠A = 45°. Пусть M – середина BC, H – ортоцентр треугольника ABC.
Докажите, что прямая MH проходит через середину дуги AB описанной окружности треугольника ABC.
|
|
Сложность: 4 Классы: 8,9,10
|
В треугольнике ABC отмечены середины сторон AC и BC – точки M и N соответственно. Угол MAN равен 15°, а угол BAN равен 45°.
Найдите угол ABM.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 52]