ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 448]      



Задача 54928

Темы:   [ Треугольник (экстремальные свойства) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9,10

В треугольнике ABC со стороной AC = 8 проведена биссектриса BL. Известно, что площади треугольников ABL и BLC относятся как 3 : 1. Найдите биссектрису BL, при которой высота, опущенная из вершины B на основание AC, будет наибольшей.

Прислать комментарий     Решение


Задача 56895

Темы:   [ Окружность, вписанная в угол ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 8,9

Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус описанной окружности треугольника со сторонами     равен    где p – полупериметр треугольника ABC.

Прислать комментарий     Решение

Задача 65370

Темы:   [ Пересекающиеся окружности ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Теорема косинусов ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

На плоскости нарисованы 100 кругов, каждые два из которых имеют общую точку (возможно, граничную).
Докажите, что найдётся точка, принадлежащая не менее чем 15 кругам.

Прислать комментарий     Решение

Задача 110909

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды SABCD ( S – вершина) равна 10. Точки E и F расположены на рёбрах DC и BC соответственно, причём CE=6 , CF=9 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой E , центр основания лежит на прямой SA , а отрезок EF является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Задача 110910

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной треугольной пирамиды SABC ( S – вершина) равна 8. Точки K и L расположены на рёбрах AB и AC соответственно, причём AK=7 , AL=4 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой K , центр основания лежит на прямой SC , а отрезок KL является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .