Страница:
<< 7 8 9 10 11 12
13 >> [Всего задач: 62]
|
|
Сложность: 5- Классы: 9,10,11
|
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на 2N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
|
|
Сложность: 5- Классы: 9,10,11
|
В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет.
|
|
Сложность: 5+ Классы: 10,11
|
На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек,
лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если
три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то
и четвёртая плоскость также его касается.
|
|
Сложность: 6 Классы: 9,10,11
|
Найдите необходимые и достаточные условия, которым должны удовлетворять числа a, b, α и β, чтобы прямоугольник размером a×b можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером
а) 20×15; б) 5×8; в) 6,25×15; г)
|
|
Сложность: 6 Классы: 9,10,11
|
Докажите, что существует такое натуральное число
n , что если правильный треугольник со стороной
n разбить прямыми, параллельными его сторонам, на
n2 правильных треугольников со стороной 1,
то среди вершин этих треугольников можно выбрать
1993
n точек, никакие три из которых не являются
вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного
треугольника).
Страница:
<< 7 8 9 10 11 12
13 >> [Всего задач: 62]