Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 49]
Одна вершина правильного треугольника лежит на окружности, а две другие делят некоторую хорду на три равные части.
Под каким углом видна хорда из центра окружности?
Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если CD = a.
|
|
Сложность: 4- Классы: 7,8,9
|
В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.
На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что KQ ⊥ PR,
PL ⊥ KM, LR ⊥ PQ, QM ⊥ KL. Отношение расстояния от центра описанной вокруг
четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O.
|
|
Сложность: 3- Классы: 8,9,10
|
Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Найдите площадь кольца, заключенного между окружностями.
Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 49]