ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



Задача 54054

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 8,9

Одна вершина правильного треугольника лежит на окружности, а две другие делят некоторую хорду на три равные части.
Под каким углом видна хорда из центра окружности?

Прислать комментарий     Решение

Задача 54148

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Средняя линия треугольника ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 8,9

Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если  CD = a.

Прислать комментарий     Решение

Задача 98408

Темы:   [ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Хорды и секущие (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Центральный угол. Длина дуги и длина окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 7,8,9

В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

Прислать комментарий     Решение

Задача 102241

Темы:   [ Признаки подобия ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Хорды и секущие (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что  KQPR,  PLKM,  LRPQ,  QMKL.  Отношение расстояния от центра описанной вокруг четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O.

Прислать комментарий     Решение

Задача 35137

Темы:   [ Площадь круга, сектора и сегмента ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Хорды и секущие (прочее) ]
Сложность: 3-
Классы: 8,9,10

Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Найдите площадь кольца, заключенного между окружностями.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .