Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 496]
|
|
Сложность: 4- Классы: 8,9,10
|
Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?
|
|
Сложность: 4- Классы: 9,10
|
В четырёхугольнике ABCD углы A и C – прямые. На сторонах AB и CD как на диаметрах построены окружности, пересекающиеся в точках X и Y. Докажите, что прямая XY проходит через середину K диагонали AC
|
|
Сложность: 4- Классы: 9,10,11
|
Дан вписанный четырёхугольник АВСD. Продолжения его противоположных сторон пересекаются в точках P и Q. Пусть К и N – середины диагоналей.
Докажите, что сумма углов PKQ и PNQ равна 180°.
|
|
Сложность: 4- Классы: 10,11
|
Четырёхугольник АВСD вписан в окружность, I – центр вписанной окружности треугольника ABD.
Найдите наименьшее значение BD, если AI = BC = CD = 2.
|
|
Сложность: 4- Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность Г c центром в точке O. Его диагонали AC и BD перпендикулярны и пересекаются в точке P, причём точка O лежит внутри треугольника BPC. На отрезке BO выбрана точка H так, что ∠BHP = 90°. Описанная окружность ω треугольника PHD вторично пересекает отрезок PC в точке Q. Докажите, что AP = CQ.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 496]