ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 496]      



Задача 66588

Темы:   [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Средняя линия треугольника ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10,11

Точка $M$ – середина стороны $BC$ треугольника $ABC$. Окружность $\omega$ проходит через точку $A$, касается прямой $BC$ в точке $M$ и пересекает сторону $AB$ в точке $D$, а сторону $AC$ – в точке $E$. Пусть $X$ и $Y$ – середины отрезков $BE$ и $CD$ соответственно. Докажите, что окружность, описанная около треугольника $MXY$, касается $\omega$.
Прислать комментарий     Решение


Задача 66838

Темы:   [ Вписанные четырехугольники ]
[ Описанные четырехугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9,10,11

Точка $M$ лежит внутри выпуклого четырёхугольника $ABCD$ на одинаковом расстоянии от прямых $AB$ и $CD$ и на одинаковом расстоянии от прямых $BC$ и $AD$. Оказалось, что площадь четырёхугольника $ABCD$ равна  $MA\cdot MC + MB\cdot MD$.  Докажите, что четырёхугольник $ABCD$
  а) вписанный;
  б) описанный.

Прислать комментарий     Решение

Задача 66862

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Векторы помогают решить задачу ]
[ Радикальная ось ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Дидин М.

Дан вписанный четырёхугольник $ABCD$. Окружности с диаметрами $AB$ и $CD$ пересекаются в двух точках $X_{1}$ и $Y_{1}$. Окружности с диаметрами $ВС$ и $АD$ пересекаются в двух точках $X_{2}$ и $Y_{2}$. Окружности с диаметрами $AС$ и $ВD$ пересекаются в двух точках $X_{3}$ и $Y_{3}$. Докажите, что прямые $X_{1}Y_{1}, X_{2}Y_{2}, X_{3}Y_{3}$ пересекаются в одной точке.

Прислать комментарий     Решение

Задача 67210

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.
Прислать комментарий     Решение


Задача 102452

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

Четырёхугольник ABCD вписан в окружность. Известно, что AC $ \perp$ BD. Найдите длину BC, если расстояние от центра окружности до стороны AD равно 2.

Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .