ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 496]
В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный.
Cерединные перпендикуляры к сторонам BC и AC остроугольного треугольника ABC пересекают прямые AC и BC в точках M и N. Пусть точка C движется по описанной окружности треугольника ABC, оставаясь в одной полуплоскости относительно AB (при этом точки A и B неподвижны). Докажите, что прямая MN касается фиксированной окружности.
В четырёхугольнике KLMN, вписанном в окружность, биссектрисы углов K и N пересекаются в точке P, лежащей на стороне LM. Известно, что отношение длины отрезка KL к длине отрезка MN равно b. Найдите: а) отношение расстояний от точки P до прямых KL и MN; б) отношение длины хорды LM к длине хорды MN.
На дуге окружности, стягиваемой хордой KN, взяты точки L и M. Биссектрисы углов KLM и LMN пересекаются в точке P, лежащей на хорде KN. Известно, что отношение длины хорды KL к длине хорды KN равно . Найдите: а) отношение расстояний от точки P до прямых KL и MN; б) отношение площадей треугольников KLP и MPN.
На сторонах AB, BC и CA треугольника ABC взяты соответственно точки C1, A1 и B1 так, что прямые AA1, BB1 и CC1 пересекаются в точке M. Докажите, что если: а) два из этих четырёхугольников являются вписанными, то и третий также является вписанным; б) два из этих четырёхугольников являются описанными, то и третий также является описанным.
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|