ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 496]      



Задача 52483

Темы:   [ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

На сторонах AB, BC и AC треугольника ABC взяты соответственно точки D, E и F так, что DE = BE, FE = CE. Докажите, что центр описанной около треугольника ADF окружности лежит на биссектрисе угла DEF.

Прислать комментарий     Решение


Задача 66933

Темы:   [ Описанные четырехугольники ]
[ Теорема Птолемея ]
[ Отношение, в котором биссектриса делит сторону ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Построения с помощью вычислений ]
Сложность: 5
Классы: 9,10,11

Диагонали вписанно-описанного четырехугольника $ABCD$ пересекаются в точке $L$. Даны три отрезка, равные $AL$, $BL$, $CL$. Восстановите четырехугольник с помощью циркуля и линейки.
Прислать комментарий     Решение


Задача 67129

Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Теорема Птолемея ]
Сложность: 5
Классы: 8,9,10,11

Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$.
Прислать комментарий     Решение


Задача 52522

Темы:   [ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

На стороне AD вписанного в окружность четырёхугольника ABCD находится центр окружности, касающейся трёх других сторон четырёхугольника. Найдите AD, если AB = 2 и CD = 3.

Прислать комментарий     Решение


Задача 57047

Темы:   [ Геометрические интерпретации в алгебре ]
[ Теорема Птолемея ]
[ Тождественные преобразования (тригонометрия) ]
[ Теорема синусов ]
Сложность: 5+
Классы: 9,10,11

Пусть  $ \alpha$ = $ \pi$/7. Докажите, что  $ {\frac{1}{\sin\alpha }}$ = $ {\frac{1}{\sin 2\alpha }}$ + $ {\frac{1}{\sin
3\alpha }}$.
Прислать комментарий     Решение


Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .