ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точки IA, IB, IC – центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Перпендикуляр, опущенный из IA на AC, пересекает перпендикуляр, опущенный из IB на BC, в точке XC. Аналогично определяются точки XA и XB. Докажите, что прямые IAXA, IBXB и ICXC пересекаются в одной точке. ![]() ![]() В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой. ![]() ![]() |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 496]
Четырёхугольник ABCD таков, что в него можно вписать и около него можно описать окружности. Диаметр описанной окружности совпадает с диагональю AC. Докажите, что модули разностей длин его противоположных сторон равны.
Четырёхугольник ABCD таков, что в него можно вписать и около него можно описать окружности. Разность сторон AD и BC равна разности сторон AB и CD. Докажите, что диагональ AC — диаметр описанной окружности.
В окружность
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |