ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 496]
В окружность с центром в точке O вписан четырёхугольник KLMN, диагонали которого перпендикулярны. Площадь круга, ограниченного окружностью равна 1110. Найдите длину отрезка MN и сравните с числом 10, если известно, что угол MON в пять раз больше угла KOL.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Окружность, пересекающая боковые стороны AC и CB равнобедренного треугольника ACB соответственно в точках P и Q, является описанной около треугольника ABQ. Отрезки AQ и BP пересекаются в точке D так, что AQ : AD = 4 : 3. Найдите площадь треугольника DQB, если площадь треугольника PQC равна 3.
Площадь равнобедренного треугольника PQR равна 12. На боковых сторонах PQ и RQ взяты соответственно точки B и C так, что вокруг четырёхугольника PBCQ можно описать окружность и PQ : BC = 3 : 2. Найдите площадь треугольника APQ, где A — точка пересечения отрезков PC и BQ.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|