ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 496]      



Задача 102416

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3+
Классы: 8,9

В окружность $ \beta$ с центром в точке O вписан четырёхугольник KLMN, диагонали которого перпендикулярны. Площадь круга, ограниченного окружностью $ \beta$ равна 1110. Найдите длину отрезка MN и сравните с числом 10, если известно, что угол MON в пять раз больше угла KOL.

Прислать комментарий     Решение


Задача 56618

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Прислать комментарий     Решение


Задача 67113

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9,10,11

Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.
Прислать комментарий     Решение


Задача 108518

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Окружность, пересекающая боковые стороны AC и CB равнобедренного треугольника ACB соответственно в точках P и Q, является описанной около треугольника ABQ. Отрезки AQ и BP пересекаются в точке D так, что AQ : AD = 4 : 3. Найдите площадь треугольника DQB, если площадь треугольника PQC равна 3.

Прислать комментарий     Решение


Задача 108519

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Площадь равнобедренного треугольника PQR равна 12. На боковых сторонах PQ и RQ взяты соответственно точки B и C так, что вокруг четырёхугольника PBCQ можно описать окружность и PQ : BC = 3 : 2. Найдите площадь треугольника APQ, где A — точка пересечения отрезков PC и BQ.

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .