ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые? ![]() ![]() Дан выпуклый четырехугольник ABCD. Докажите, что если равны периметры треугольников ABC, BCD, CDA, DAB, то ABCD - прямоугольник. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 166]
Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°.
В трапеции ABCD основание AD в четыре раза больше чем BC. Прямая, проходящая через середину диагонали BD и параллельная AB, пересекает сторону CD в точке K. Найдите отношение DK : KC.
В трапеции ABCD стороны AD и BC параллельны, и AB = BC = BD. Высота BK пересекает диагональ AC в точке M. Найдите ∠CDM.
В трапеции ABCD известно, что AB = a, BC = b (a ≠ b). Определите, что пересекает биссектриса угла A: основание BC или боковую сторону CD?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 166] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |