ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 507]
ABCDE — правильный пятиугольник. Tочка B' симметрична точке B относительно прямой AC (см. рисунок). Mожно ли пятиугольниками, равными AB'CDE, замостить плоскость?
а) Выпуклый пятиугольник разбили непересекающимися диагоналями на три треугольника. Могут ли точки пересечения медиан этих треугольников лежать на одной прямой? б) Тот же вопрос для невыпуклого пятиугольника.
На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.
На диагоналях AC и CE правильного шестиугольника ABCDEF взяты точки M и N соответственно, причём AM/AC = CN/CE = λ. Известно, что точки B, M и N лежат на одной прямой. Найдите λ.
Середины сторон выпуклого пятиугольника последовательно соединены отрезками. Найдите периметр полученного пятиугольника, если сумма всех диагоналей данного равна a.
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 507] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |