ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть Ω' – окружность, гомотетичная с коэффициентом ½ вписанной окружности ω треугольника относительно точки Нагеля, а Ω – окружность, гомотетичная окружности ω ![]() |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 181]
Все точки окружности окрашены произвольным образом в два цвета.
Правильный треугольник ABC вписан в окружность. Прямая l, проходящая через середину стороны AB и параллельная AC, пересекает дугу AB, не содержащую C, в точке K. Докажите, что отношение AK : BK равно отношению стороны правильного пятиугольника к его диагонали.
В кубе АВСDА1В1С1D1 площадь ортогональной проекции грани АА1В1В на плоскость, перпендикулярную диагонали АС1, равна 1.
В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол α ≠ 2π совмещается сам с собой. Доказать, что n – число составное.
На плоскости отмечена точка O. Можно ли так расположить на плоскости: а) 5 кругов; б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 181] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |