ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 404]      



Задача 66242

Темы:   [ Длины сторон (неравенства) ]
[ Формулы для площади треугольника ]
Сложность: 3+
Классы: 8,9

Длины сторон треугольника ABC не превышают 1.
Докажите, что  p(1 – 2Rr) ≥ 1,  где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.

Прислать комментарий     Решение

Задача 97916

Темы:   [ Покрытия ]
[ Площадь треугольника (через высоту и основание) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?

Прислать комментарий     Решение

Задача 98455

Темы:   [ Неравенства для площади треугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Монотонность, ограниченность ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9

Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
  а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
  б) Докажите, что площадь треугольника A'B'C' равна четверти площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек A', C' совпадает с серединой соответствующей стороны.

Прислать комментарий     Решение

Задача 102443

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На продолжении биссектрисы AL треугольника ABC за точку A взята такая точка D, что  AD = 10  и  ∠BDC = ∠BAL = 60°.
Найдите площадь треугольника ABC. Какова наименьшая площадь треугольника BDC при данных условиях?

Прислать комментарий     Решение

Задача 102444

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Площадь треугольника ABC равна 9. На продолжении его биссектрисы BL за точку B взята такая точка D, что  ∠ADC = ∠ABL = 45°.
Найдите длину отрезка BD. Какова наименьшая площадь треугольника ADC при данных условиях?

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 404]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .