Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 404]
Длины сторон треугольника ABC не превышают 1.
Докажите, что p(1 – 2Rr) ≥ 1, где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.
Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?
Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
б) Докажите, что площадь треугольника A'B'C' равна четверти
площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек
A', C' совпадает с серединой соответствующей стороны.
На продолжении биссектрисы AL треугольника ABC за точку A
взята такая точка D, что AD = 10 и ∠BDC = ∠BAL = 60°.
Найдите площадь треугольника ABC. Какова наименьшая площадь треугольника BDC при данных условиях?
Площадь треугольника ABC равна 9. На продолжении его биссектрисы BL за точку B взята такая точка D, что ∠ADC = ∠ABL = 45°.
Найдите длину отрезка BD. Какова наименьшая площадь треугольника ADC при данных условиях?
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 404]