ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 20]      



Задача 56698

Тема:   [ Площади криволинейных фигур ]
Сложность: 5
Классы: 9

На сторонах произвольного остроугольного треугольника ABC как на диаметрах построены окружности. При этом образуется три к внешнихк криволинейных треугольника и один к внутреннийк (рис.). Докажите, что если из суммы площадей к внешнихк треугольников вычесть площадь к внутреннегок треугольника, то получится удвоенная площадь треугольника ABC.


Прислать комментарий     Решение

Задача 66623

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Площади криволинейных фигур ]
Сложность: 3
Классы: 9,10,11

Требуется разделить криволинейный треугольник на рисунке на 2 части одинаковой площади, проведя одну линию циркулем. Это можно сделать, выбрав в качестве центра одну из отмеченных точек и проводя дугу через другую отмеченную точку. Найдите способ это сделать и докажите, что он подходит.

Прислать комментарий     Решение

Задача 53249

Темы:   [ Касающиеся окружности ]
[ Площади криволинейных фигур ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Две окружности разных радиусов касаются в точке C одной прямой и расположены по одну сторону от неё. Отрезок CD – диаметр большей окружности. Из точки D проведены две прямые, касающиеся меньшей окружности в точках A и B. Прямая, проходящая через точки C и A, образует с общей касательной к окружностям в точке C угол 75° и пересекает большую окружность в точке M. Известно, что  AM = .  Найдите площадь фигуры, ограниченной отрезками касательных DA, DB и дугой ACB меньшей окружности.

Прислать комментарий     Решение

Задача 105084

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Площади криволинейных фигур ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 9,10,11

Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.
Прислать комментарий     Решение


Задача 53056

Темы:   [ Угол между касательной и хордой ]
[ Площади криволинейных фигур ]
[ Площадь круга, сектора и сегмента ]
Сложность: 4-
Классы: 8,9

Две окружности разных радиусов касаются в точке A одной и той же прямой и расположены по разные стороны от неё. Отрезок AB -- диаметр меньшей окружности. Из точки B проведены две прямые, касающиеся большей окружности в точках M и N. Прямая, проходящая через точки M и A, пересекают меньшую окружность в точке K. Известно, что MK = $ \sqrt{2 + \sqrt{3}}$, а угол BMA равен 15o. Найдите площадь фигуры, ограниченной отрезками касательной BM, BN и той дугой MN большей окружности, которая не содержит точку A.

Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 20]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .