ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 1547]      



Задача 79295

Темы:   [ Свойства симметрий и осей симметрии ]
[ Обратный ход ]
Сложность: 3+
Классы: 10,11

Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.
Прислать комментарий     Решение


Задача 102209

Темы:   [ Гомотетия помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

В треугольник ABC со сторонами  AB = 6,  BC = 5,  AC = 7  вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.

Прислать комментарий     Решение

Задача 102210

Темы:   [ Гомотетия помогает решить задачу ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

В треугольник MNK со сторонами  MN = 6,  NK = 7  и углом 60° при вершине N вписан квадрат, две вершины которого лежат на стороне MN, одна на стороне NK и одна на стороне MK. Через середину стороны MN и центр квадрата проведена прямая, которая пересекается с высотой KR треугольника MNK в точке O. Найдите длину отрезка OK.

Прислать комментарий     Решение

Задача 102310

Темы:   [ Поворот ]
[ Вспомогательные подобные треугольники ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Точка Q расположена на стороне MN треугольника LMN так, что  NQ : QM = 1 : 2.  При повороте этого треугольника на некоторый угол вокруг точки Q вершина L переходит в вершину N, а вершина M – в точку P, лежащую на продолжении стороны LM за точку L. Найдите углы треугольника LMN.

Прислать комментарий     Решение

Задача 102311

Темы:   [ Поворот ]
[ Вспомогательные подобные треугольники ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

При повороте треугольника KLM на угол 120° вокруг точки Q, лежащей на стороне KL, вершина M переходит в вершину K, а вершина L – в точку N, лежащую на продолжении стороны LM за точку M. Найдите отношение площадей треугольников KLM и LNQ.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .